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Assignment 6: Trailblazer
Developed by Keith Schwarz and Dawson Zhou, and based on the Pathfinder assignment developed by Leonid Shamis at UC Davis,  

Stanford's Pathfinder assignment by Eric Roberts and Julie Zelenski, and and the Maze Generator assignment by Jerry Cain.

For your final assignment of the quarter, you will use your skills to implement three classic graph al -
gorithms – Dijkstra's algorithm, A* search, and Kruskal's algorithm – to build and navigate different 
terrains.  In the course of doing so, you'll get to see how real pathfinding algorithms work and will gain 
familiarity representing abstract  structures  (namely,  graphs) directly  in software.   By the time that 
you're done with this assignment, you will have a much deeper understanding of graphs and graph al-
gorithms.  You'll be more comfortable turning high-level pseudocode directly into executable C++. 
And, to top it off, you'll have a really nifty piece of software!

Due Friday, August 16 at 11AM.
No late submissions can be accepted, and no late days can be used.

The Program

Your task in this assignment (described in more detail later on) is to implement Dijkstra's algorithm 
and A* search so that  you  can find shortest  paths  across  various  terrains,  and then  to  implement 
Kruskal's algorithm in order to generate random mazes.

To let you see your algorithms in action, we have provided a graphical program you can use to test and  
visualize your implementations of the three algorithms.  When you start up the program, you will see a 
window containing a randomly-generated terrain.  Here, bright colors indicate higher elevations, while 
darker colors represent lower eleva-
tions.   Therefore,  mountain  ranges 
will  appear  in  bright  white,  while 
deep canyons will appear black.

If you click on any two points in the 
world,  the program will  use  the al-
gorithm  selected  in  the  top  drop-
down  menu  (either  Dijkstra's  al-
gorithm  or  A*  search)  to  find  a 
shortest  path from the starting posi-
tion  to  the  ending  position.   As  it 
does so, it will color the nodes green, 
yellow, and gray based on the colors 
assigned  to  them by  the  algorithm. 
Once the final path is found, the pro-
gram will highlight it and display the 
total path cost in the console.

The  window  also  contains  several 
controls.  You can generate random 
terrains of different sizes (small, me-
dium, large,  and huge) by choosing 
the  “Random  Terrain”  option  from 
the bottom-left dropdown menu and 
choosing  the  size  from  the  bot-
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tom-right dropdown menu, then clicking the “New World” button.  Alternatively,  you can run the 
pathfinding algorithms in a 2D maze by choosing the “Random Maze” option from the bottom-right 
dropdown menu and clicking the “New World” button.  Alternatively,  you can load a preset world 
from a file on-disk by choosing the “Load World” button and selecting the file with the file chooser.

When you first begin working on this assignment, the pathfinding algorithm will not be implemented 
and you will get an error message if you try to find paths between pairs of points.  Similarly, the maze 
generation code will not have been written, so the Random Maze option will not work.  Therefore, we 
suggest trying out our sample application to get a sense for how to use the program and to see the ex-
pected behavior.  That way, when you start making progress on the assignment, you will have a better  
sense for what to expect.

The Starter Code

We have provided a lot of starter code for this assignment.  Here is a quick breakdown of what each 
file contains.  We recommend that you open and read through the files marked with a star:

•  ★ Trailblazer.h / .cpp.  These are the files where you are likely to do most, if not all, of 
the  work  for  the  assignment.   You will  write  your  implementations  of  the  three  graph al-
gorithms in this file.

•  ★ TrailblazerTypes.h / .cpp.  Defines several types fundamental to the assignment, such 
as types for storing locations, edges, and colors.  You should not need to modify these files.

• ★ TrailblazerPQueue.h.  Defines the type TrailblazerPQueue, a slightly modified ver-
sion of PriorityQueue that supports the decreaseKey operation.  You will almost certainly 
want to use this version of the priority queue instead of the normal PriorityQueue type.  You 
should not need to modify this file.

• TrailblazerConstants.h.  Defines constants needed across multiple modules.  The con-
stants here are mostly used by driver code, so you should not need to directly use or modify this 
file.

• TrailblazerCosts.h /  .cpp.   Defines functions for computing the cost of moving from 
square to square in terrains and mazes, as well as heuristic functions.  You should not need to 
directly use or modify these files, though you may want to do so as an extension.

• TrailblazerGraphics.h / .cpp.  The main program module, which is responsible for set-
ting up the window, interacting with the mouse, loading files, etc.  You should not need to 
modify these files.

• WorldGenerator.h /  .cpp.   Defines  functions  for  generating  terrains  and  mazes.   You 
should not need to use or directly modify these files.

Although there is a lot of code here, you will most likely only need to modify Trailblazer.h and 
Trailblazer.cpp.  Most of the other files are either implementations of helper functions or part of 
our driver code.

Step One: Implement Dijkstra's Algorithm

Your task for this portion of the assignment is to implement Dijkstra's algorithm so that it is possible to 
find the shortest path from one point in the world to another.  If you think of the terrain as a graph (de-
scribed in more detail in the next section), then finding the shortest path from the start location to the 
destination location ends up being equivalent to finding the shortest path in an appropriate graph.
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The world that we give to you is represented by a Grid<double>, where each double represents an 
elevation between 0 (lowland) and 1 (high mountain peak).  Although we aren't presenting this Grid to 
you as a graph, you can treat it as if it were a graph by assuming each grid location is connected to the 
eight cells directly adjacent to it, as shown here:

(This is similar to how the cells in the Boggle grid were connected to one another.)

To represent the fact that it is difficult to move through the terrain, each edge in the graph has a cost as-
sociated with it, which represents the amount of work required to follow that edge.  We will provide 
you a function that, when provided two adjacent locations on the grid, will tell you the cost of the edge 
connecting those locations.  The function will return a nonnegative real number representing the cost of 
following that edge.  The cost depends both on the direction of movement (moving diagonally takes 
more work than moving horizontally or vertically) and the change in altitude (climbing or descending a 
steep gradient takes more work than walking on level ground).

Your task for this portion of the assignment is to implement a function with the following signature:

     Vector<Loc>
     shortestPath(Loc start, Loc end,
                  Grid<double>& world,
                  double costFunction(Loc one, Loc two, Grid<double>& 
world));

This function takes in four parameters, which are described below.

• Loc start and Loc end.  The Loc type is a struct with two fields – row and col – that 
identify locations on a grid.  It's defined in the TrailblazerTypes.h header file.  The start 
and  end parameters give the source and destination cell on the grid, and your function will 
compute a shortest path between them.

• Grid<double>& world.  This Grid represents the terrain in the world, as described above.

• double costFunction(Loc one, Loc two, Grid<double>& world).  This paramet-
er is a function (see the Functions as Parameters handout for more details about this).  It takes 
in three arguments – two Locs representing points on the grid, and the grid itself – then returns 
the cost of the edge between those two points.  You will need to use this function to determine 
the cost of moving from one grid location to another.

Your function should use Dijkstra's algorithm to compute a shortest path from start to end, and then 
return that path as a Vector<Loc> containing all of the points in that path in the order in which they 
appear, starting with start and ending with end.  The path should include both start and end, as 
well as the intermediary nodes.
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An important note: The version of Dijkstra's algorithm suggested in the course reader is slightly dif-
ferent than the version we discussed in lecture and is less efficient.  Your implementation of Dijkstra's  
algorithm should follow the version we discussed in lecture.  Specifically, your implementation should 
not store complete paths in the priority queue.  Instead, the priority queue should just store nodes, and 
you should use an auxiliary structure to reconstruct the shortest path tree.

For reference, the pseudocode for the version of Dijkstra's algorithm described in lecture is on the next 
page of this handout.

Dijkstra's Algorithm from node startNode to node endNode:
• Color all nodes gray.
• Color startNode yellow.
• Set startNode's candidate distance to 0.
• Enqueue startNode into the priority queue with priority 0.
• While the queue is not empty:

• Dequeue the lowest-cost node curr from the priority queue.
• Color curr green.  (The candidate distance dist that is currently stored for node curr is the 

length of the shortest path from startNode to curr.)
• If curr is the destination node endNode, you have found the shortest path from startNode 

to endNode and are done.
• For each node v connected to curr by an edge of length L:

• If v is gray:
• Color v yellow.
• Set v's candidate distance to be dist + L.
• Set v's parent to be curr.
• Enqueue v into the priority queue with priority dist + L.

• Otherwise, if v is yellow and the candidate distance to v is greater than dist + L:
• Set v's candidate distance to be dist + L.
• Set v's parent to be curr.
• Update v's priority in the priority queue to dist + L.

Aside from the restriction on which version of Dijkstra's algorithm you use, you are free to implement 
this function however you see fit and can use any data structures that you'd like when doing so.  Before 
you start coding anything up, we suggest thinking about the following questions:

• How will you keep track of the parent cell for each cell in the grid?

• How will you track which cells are unvisited (gray), expanded (green), or enqueued (yellow)?

• How will you keep track of the distances to each node?

While you do not need to aggressively optimize your implementation, you should try to choose data 
structures that are efficient for the task at hand.  Part of your style grade for this assignment  will be 
based on the choices you make  here, so we suggest providing comments explaining your decisions. 
For example, it would probably not be a good idea to keep track of which cells are green using a Vec-
tor<Loc>, since  doing so would be inefficient and inelegant.   As a reminder,  you might find the 
TrailblazerPQueue type useful here, as it supports decreaseKey.

When running Dijkstra's algorithm, your program will calculate the shortest paths to multiple different 
nodes, not just the single destination node that you had in mind.  This is normal and is related to how 
Dijkstra's algorithm works.  To help you get a better sense for what Dijkstra's algorithm is doing, we 
have provided the following function in TrailblazerGraphics.h to color squares in the world:

void colorCell(Grid<double>& world, Loc loc, Color color);
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This function accepts three parameters – the world grid, a location in that world, and a color – then col-
ors the specified location in the world the color given by color.  (Note that the  Color enumerated 
type is defined in  TrailblazerTypes.h.  If you are not familiar with enumerated types, you can 
read more about them in Chapter 1.5 and 1.7 of the course reader).  Your  shortestPath function 
should call colorCell in the following circumstances:

• When enqueuing a node into the priority queue for the first time (i.e. coloring it yellow for the 
first time), you should call colorCell to highlight that node yellow.

• When dequeuing a node from the priority queue (i.e. converting it from yellow to green), you 
should call colorCell to highlight that node green.

Since the display starts off with all cells colored gray, you don't need to use colorCell to color all 
initial cells gray.  If you do, you might see a long pause before your algorithm starts running, since  
your program is busy redrawing the world.

Although we provide you a colorCell function for this part of the assignment, you still need to keep 
track of the node colors yourself.  The colorCell function just updates the display.

As your algorithm runs, the above calls will help you visualize exactly what the algorithm is doing, 
which will help you get a better feel for how the algorithm works.  (Plus, it is  really, really  fun to 
watch!)  In the next part of the assignment, you'll be able to use this code to compare how many nodes 
Dijkstra's algorithm explores to how many nodes the A* search algorithm explores.

Before moving on to the next section, we strongly suggest testing your algorithm on a variety of test 
worlds.  We've provided several different sample worlds, and you can compare the paths that your al-
gorithm finds against the paths that our reference implementation finds.  Note that there might be many 
different but equally valid paths between two points, so your algorithm might not produce the exact 
same path as ours.  However, your algorithm should always return a path with the same total cost as 
ours; if the costs differ, there is likely an error in your algorithm.  To help with testing, our starter code  
will automatically print out the cost of the path that your function returns.

For reference, our implementation of this function is roughly 75 lines of code, including whitespace,  
comments, and function prototypes.  If you find yourself writing dramatically more code than this, you  
might want to reevaluate your solution.

Step Two: Implement A* Search

For the next part of this assignment, you will modify your shortest path code so that it supports both A* 
search and Dijkstra's algorithm.  Modify the signature for shortestPath so that it looks like this:

   Vector<Loc>
   shortestPath(Loc start, Loc end,
                Grid<double>& world,
                double costFunction(Loc one, Loc two, Grid<double>& world),
                double heuristic(Loc start, Loc end, Grid<double>& world));

(You will need to change the function signature in two places – once in the Trailblazer.cpp source 
file, and once in the Trailblazer.h header file.  If you don't change the signature in both places, you 
will get a linker error.)

Your function now accepts a heuristic function as an additional parameter.  This heuristic function 
takes in three parameters – a start location, an end location, and the terrain – then provides a guess of 
the distance from the start location to the end location.  You can assume that this is an admissible heur-
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istic, meaning that it never overestimates the distance to the destination node.  Using this extra para-
meter, modify your function so that it performs A* search instead of using Dijkstra's algorithm.  For 
reference, the pseudocode for A* search is given on the next page of this handout.

Note that even though your function now takes in a heuristic function, you can still use this new func-
tion to run Dijkstra's algorithm.  Recall that if the heuristic function is a function that always evaluates 
to 0,  then A* search and Dijkstra's  algorithm behave identically.   In fact,  our starter  code is  pro-
grammed so that when you change your implementation to take in the extra parameter for the heuristic, 
we will automatically call it and pass a function that always evaluates to zero when you choose “Dijk-
stra's Algorithm” from the drop-down menu.

If you click on the A* button at the main program, our starter code will call your function and pass in 
as the final parameter a heuristic function we've specifically crafted to work with our distance function. 
Because your function already marked all locations that are enqueued when finding a shortest path, 
once you change your code to incorporate the heuristic you should immediately see a difference in how 
many locations are explored during A* search.  Pretty amazing, isn't it?

You should need to make only minor code changes for this part of the assignment .  Our imple-
mentation required us to change roughly five lines of code to convert from Dijkstra's algorithm to A* 
search, though depending on how you've coded up your solution you might need to change more code 
(or perhaps even less!)  It might help to review the pseudocode for A* (given on the next page) and 
compare it to the pseudocode for Dijkstra's algorithm.

A* search from node startNode to node endNode using heuristic h:
• Color all nodes gray.
• Color startNode yellow.
• Set startNode's candidate distance to 0.
• Enqueue startNode into the priority queue with priority h(startNode, endNode).
• While the queue is not empty:

• Dequeue the lowest-cost node curr from the priority queue.
• Color curr green.  (The candidate distance dist that is currently stored for node curr is the 

length of the shortest path from startNode to curr.)
• If curr is the destination node endNode, you have found the shortest path from startNode 

to endNode and are done.
• For each node v connected to curr by an edge of length L:

• If v is gray:
• Color v yellow.
• Set v's candidate distance to be dist + L.
• Set v's parent to be curr.
• Enqueue v into the priority queue with priority dist + L + h(v, endNode).

• Otherwise, if v is yellow and the candidate distance to v is greater than dist + L:
• Set v's candidate distance to be dist + L.
• Set v's parent to be curr.
• Update v's priority in the priority queue to dist + L + h(v, endNode).

To help you compare the behavior of Dijkstra's algorithm and A* search, we have provided a “rerun” 
button at the top of the window.  If you click on this button after performing a search between two 
points, it will repeat that search using the algorithm currently selected in the drop-down menu at the top 
of the program.  Try running a search using Dijkstra's algorithm, switch the algorithm choice to “A* 
Search,” and run that search again.  You might be pleasantly surprised by just how much more efficient 
A* search is!
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To test whether your program is working correctly, try comparing the output of your program to the 
output of our reference solution.  As before, you might find slightly different shortest paths than our 
reference solution because there might be multiple possible shortest paths, but your implementation 
should not return a path whose total cost differs from our path.  You should also look at which loca-
tions the implementations explored; if there's a huge difference between the two, that might indicate a 
bug in your code.

Additionally, since our provided heuristic is an admissible heuristic, your A* search algorithm should 
always return a path with the same cost as the path found by Dijkstra's algorithm.  If you find that the  
algorithms give paths of different costs, it probably indicates a bug in your solution.
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Step Three: Implement Kruskal's Algorithm

You now have a slick, efficient pathfinding algorithm that can navigate a variety of different terrains. 
But how well would it do trying to help you get out of a maze?

Your final task in this assignment is to implement a maze generator using Kruskal's algorithm.  If you'll  
recall from lecture, Kruskal's algorithm can be used to find a minimum spanning tree for a given graph. 
The pseudocode for Kruskal's algorithm is described below:

Kruskal's algorithm on a graph:
• Place each node into its own cluster.
• Insert all edges in the graph into a priority queue.
• While there are two or more clusters remaining:

• Dequeue an edge e from the priority queue.
• If the endpoints of e are not in the same cluster:

• Merge the clusters containing the endpoints of e.
• Add e to the resulting spanning tree.

• Return the spanning tree formed this way.

In lecture, we saw how Kruskal's algorithm can be used to find minimum spanning trees and perform 
data clustering.  You can also use Kruskal's algorithm will produce mazes.  Specifically, suppose that 
you have a grid graph, where the nodes are connected as follows:

If you assign each edge a random weight and then run Kruskal's algorithm on the resulting graph, you 
will end up with a spanning tree; there will be exactly one path between each pair of nodes.  For ex-
ample,  assigning the  edges in the above graph  weights as follows and running Kruskal's algorithm 
would produce the following result:

2 7 1 8
2 8 4 5 9

0 4 5 2
3 5 3 6 0

2 8 7 4
7 1 3 5 2
6 6 2 4

2 1 8
2 4

0 4 2
3 3 0

2 4
1 3 2

6 6 2 4

Take a minute to make sure you understand why Kruskal's algorithm produces this tree.
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Interestingly, you can think of this tree as a maze.  Typically, when drawing a maze, lines represent 
walls, which are impassable, and emptiness represents floors, which are passable.  The above tree has 
the opposite property: lines represent edges, which are passable, and empty space represents the ab-
sence of edges, which is impassable.  You can turn the above tree into a maze by drawing lines in all of 
the empty space, as shown here:

Your task in this part of the assignment is to use the randomized version of Kruskal's algorithm to gen-
erate a random maze.  Specifically, your task is to write a function with the following signature:

Set<Edge> createMaze(int numRows, int numCols);

This function will accept as input two integers representing the number of rows and columns in the 
maze (the number of nodes in each row and column of the grid graph), then generate a random maze of 
that size using Kruskal's algorithm.  The  function should return Set<Edge> representing the edges 
present in the spanning tree that you generated with Kruskal's algorithm.  Here, the Edge type (defined 
in  TrailblazerTypes.h) is a  struct that stores two  Locs representing the two endpoints of the 
edge.

Note that unlike the first part of this assignment, we only provide you the dimensions of the graph as 
input to the function, rather than the graph itself.  Your function will need to construct the grid graph 
with the specified dimensions and assign random weights to each edge (to get a good distribution of 
edge weights, we recommend using randomReal(0, 1) to assign the weights).

Before you start coding anything up, we suggest thinking about the following questions:

• How will you keep track of the nodes and edges in the graph?

• How will you keep track of which nodes are in each cluster?

• How will you determine which cluster a node belongs to?

• How will you merge together two clusters?

Note that for this part of the assignment, you will need to explicitly construct all of the edges in the grid 
graph.  You might want to draw some pictures to figure out how you are going to do this.

Our starter code is programmed to call your function to generate random mazes whenever you use the 
New World button with “Random Maze” selected.  Once you've generated a maze, you can run your 
Dijkstra's or A* implementation to find paths between two points in the maze.  If you'll recall, your  
shortest path function takes as input two functions – one giving the cost of an edge between two points 
and one providing a heuristic.  When you use our provided program to find the shortest path between 
two points in a maze, we will pass into shortestPath a cost function that assigns costs as follows:

• The cost of stepping onto a wall of the maze is infinite.

• The cost of taking a step diagonally is infinite.

- 9 - 



• The cost of taking a step in a cardinal direction is a small constant.

This cost function ensures that a shortest path between any two points will never cross over a wall and 
will never take a step diagonally.  This means that given this cost function, your shortest path code 
from before will automatically find shortest paths through the maze subject to the restriction that all  
steps are in cardinal directions and no steps are diagonal.

Make sure that the mazes that your function produces actually have a unique path between each pair of  
locations.  If there are two locations that aren't reachable from one another, or if there are multiple 
paths between points, your implementation of Kruskal's algorithm might contain an error.

Advice, Tips and Tricks

This assignment is not as hard as it might initially appear to be.  Although you will be coding up three 
classic graph algorithms, the total amount of code you actually need to write is rather small; our initial 
solution required only about 200 lines of code, including whitespace, #includes, and comments.

We strongly suggest taking the time to trace through the execution of Dijkstra's algorithm, A* search, 
and Kruskal's algorithm on small sample graphs before attempting to code them up.  These algorithms 
are not particularly hard to work through by hand (though computing heuristics for A* by hand can be 
a bit tedious), and if you get to the point where you can trace through the algorithms without having to 
look at the pseudocode you will have a much easier time implementing them.

Here are some specific suggestions for the different parts of the assignment:

• Our  Map,  Set, and  TrailblazerPQueue types are backed by balanced binary search trees, 
which means that the key type (in a map), value type (in a set), or element type (in a Trail-
blazerPQueue) must be comparable using the  <,  ==, and  > operators.  All C++ primitive 
types can be compared this way, as can the string type, but our container types like Vector, 
Stack,  Map, etc. cannot.  Consequently, you cannot create a  Set<Set<int>>, a  Map<Vec-
tor<int>, string>, or a  TrailblazerPQueue<Vector<int>>.  This may be particu-
larly relevant as you try to implement Kruskal's algorithm, as you may find yourself trying to  
nest container types to represent clusters.  However, our custom struct types (Loc and Edge) 
have  these  relational  operators  defined,  so  you  can  make  a  Set<Edge>,  a  Map<Loc, 
double>, or a TrailblazerPQueue<Loc>, for example.

• Make sure you are comfortable with the idea of passing functions into other functions.  The first 
function you will write will take in two parameters as input, so it's worth reviewing this in-
depth before proceeding.  Section Handout 8 discusses this, as does Chapter 20.2 of the course 
reader.  (Note that the course reader uses a slightly different syntax than what we are using 
since it discusses pointers to functions, but the idea is exactly the same.)

• Although you're expected to implement the two functions that we've provided, you are encour-
aged to decompose the function into helper functions.  It will make the code a lot easier to read 
and maintain.  If you do introduce helper functions, you should not put their prototypes in the 
Trailblazer.h file.  Header files should only export functions that other source files would 
have a reason to call directly.

• When writing Dijkstra's algorithm, take care to keep track of which nodes are already in the pri-
ority queue and which nodes have not yet been enqueued.  You cannot call decreaseKey on a 
node that is not already in the queue.

• Remember that edge costs are doubles, not ints.
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• In Dijkstra's algorithm and A* search, you will need to track candidate distances separately 
from the priorities in the priority queue, since you will need to be able to determine the candid-
ate distances to a node's neighbors after you dequeue that node from the priority queue.  We 
suggest having an auxiliary structure that holds this information.   Because of this, you will 
probably have to update costs twice in Dijkstra's algorithm – once to update your own local  
copy, and once to update the priorities in the priority queue.  Make sure to keep these two cop-
ies in sync with one another – if you don't,  you will  probably get errors when calling  de-
creaseKey.

• Don't forget to adjust the parent pointers in Dijkstra's algorithm or A* search after calling de-
creaseKey.  Otherwise, even though you'll dequeue the nodes in the proper order, your result-
ing path will be incorrect.

• Dijkstra's algorithm has found the shortest path from the start node to the end only when the 
end node has been dequeued from the priority queue (that is, when it colors the node green).  It 
is possible to enqueue the end node into the priority queue but still not have a shortest path to it,  
since there might be a shorter path to the end node that has not been considered yet.

• Although A* search enqueues nodes into the priority queue with a priority based on both the 
node candidate distances and their heuristic values, it tracks their candidate distances independ-
ently of their heuristic costs.  When storing the candidate distance to a node, do not add the 
heuristic value in.  The heuristic is only used when setting the priorities in the priority queue.

• When merging the endpoints of an edge together in Kruskal's algorithm, remember that every 
node in the same cluster as either endpoint should be merged together into one resulting cluster.

• For Dijkstra's algorithm and A* search, each cell implicitly has an edge to each of the eight  
cells horizontally,  vertically,  or diagonally adjacent to it.  For Kruskal's algorithm, each cell 
only has edges to the four cells horizontally or vertically adjacent to it.

• It can take a while to generate a large maze using Kruskal's algorithm if you do not use a spe -
cialized data structure to keep track of which nodes are in the same cluster as one another (see 
the Possible Extensions section below for more details).  It's normal for it to take a few seconds 
to generate a random maze using Kruskal's algorithm, so don't worry if this happens.  If you  
find yourself waiting twenty seconds or longer, you may need to reevaluate your strategy for 
storing the clusters.  Our reference solution uses an optimized data structure to generate its 
mazes, so don't worry if your program is a bit slower than ours.

• Since the cost of taking a diagonal step in a maze or crossing a maze wall is infinite, if your  
pathfinding code produces a path that moves diagonally or crosses a wall, it likely means that 
there is no path from your starting position to the end position.  Since the randomly-generated 
mazes should have a path between any pair of points in the world, if you encounter this behavi-
or when testing out your mazes it likely means that you have an error in your maze generator.

Possible Extensions

There are many possible extensions to this assignment.  Here are a few ideas to get you started:

• Implement a disjoint-set forest.  When implementing Kruskal's algorithm, you need a way to 
keep track of which nodes in the graph are connected to one another.  While it's possible to do 
this using the standard collections types, there is an extremely simple and much faster way to do 
this using a disjoint-set forest, a specialized data structure that makes it easy to determine if two 
nodes are connected and to connect pairs of nodes.  It is not particularly hard to code up a dis-
joint-set forest, and doing so can dramatically reduce time required to create a maze.
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• Write better heuristics.  The heuristics we have provided for estimating terrain costs and maze 
distances are simple admissible heuristics that work reasonably well.  Try seeing if you can 
modify these functions to produce more accurate heuristics.  If you do this correctly, you can 
dramatically cut down on the amount of unnecessary searching required.  However, make sure 
that your heuristics are admissible – that is, they should never overestimate the distance from 
any node to the destination node.

• Implement bidirectional search.  A common alternative to using A* search is to use a  bid-
irectional search algorithm, in which you search outward from both the start and end nodes 
simultaneously.  As soon as the two searches find a node in common, you can construct a path 
from the start node to the end node by joining the two paths to that node together.  Try coding 
this algorithm up as a third algorithm choice.

• Choose a different maze-generation algorithm.   Kruskal's algorithm is only one of many 
ways to generate a random maze.  As you saw in lecture, depth-first search can also be used to 
generate mazes.  Another minimum spanning tree algorithm called Prim's algorithm can also be 
used here to generate random mazes.  Try replacing Kruskal's algorithm with a different maze-
generation algorithm.  Can you generate more complicated mazes?

• Write a better terrain generator.  Our starter code generates terrain uses the diamond-square 
algorithm, coupled with a Gaussian blur, to generate terrains.  Many other algorithms exist that 
can generate random terrains, such as the 2D Perlin Noise algorithm.  Try implementing a dif-
ferent terrain generator and see if it produces better results.

It has been a pleasure teaching CS106B this quarter.
Best of luck on the assignment, and have a great summer!
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